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Abstract

Conduction in a semi-in®nite wall with a grooved line of contact between the wall material and convective
environment is studied using series expansions. A periodic composition of semicircles is shown to result in a uniform

gradient distribution at speci®c values of the groove radius and the convection heat transfer coe�cient. Two fractal
parquets exposed to natural thermal gradients are studied by the methods of complex analysis. In double periodic
patterns each elementary cell is fractal (Sierpinsky's carpet and Sierpinsky's gasket) in which `dark' and `light'
phases have arbitrary conductivities. The Maxwell approximation is used to calculate e�ective characteristics of both

fractal structures by `homogenization' of the environment of an `inclusion'. Solution of an exact two-dimensional
refraction problem within an elementary cell including two components is used for upscaling, i.e. recalculation of
e�ective conductivities and dissipations of subfractals of consequently increasing order. # 1999 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Problems of heat conduction in domains with inter-

faces between di�erent phases include two juxtaposing

areas: heterogeneous media (spatially-varying conduc-

tivity) and non-smooth outer boundaries of domains

of homogeneous materials, in particular, developed

surfaces. Such extended surfaces allow to enhance the

cooling of walls. Since extensive reviews are available

on both subjects [1,2], the survey of the literature

below is reduced to a minimum.

In what follows, we develop further our analytical

approach to study steady, two-dimensional (2D) heat

conduction [3,4]. The goals of this note are twofold.
First, we show that for a speci®c value of the heat con-

vection transfer coe�cient, the temperature gradient is
constant within a wall which surface is extended by a
periodic system of semi-circular troughs. Second, we

apply the analytical solutions of the R-linear conju-
gation problem [5] to calculate the e�ective conduc-
tivity and dissipation of two double periodic fractal
structures.

2. Uniform heat ¯ux from a periodic system of troughs

Consider a semi-in®nite wall of conductivity k whose
surface is extended by a system of semi-circular

troughs of radius a (Fig. 1).
Steady state temperature T�x, y� within the wall
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satis®es the Laplace equation. Temperature gradient at

in®nity, U0, is perpendicular to the mean line of the
wall surface around which the grooves wind.
By virtue of symmetry split o� one element of the

system, a half-strip with a rounded side. For de®nite-
ness, consider an element in Fig. 1, where the dashed
lines represent the two boundaries of the element

through which it is periodically continued upwards
and downwards. At the wall surface the convection
surface condition [6, p.63] holds:

k
@T

@n
� ÿa�Tÿ T0 � �1�

where k is the wall's conductivity, a is the convection

heat transfer coe�cient and @T=@n is the normal de-
rivative of temperature in the direction of the outward
normal to the surface.
We show that for the system described above the

wall temperature gradient will be uniform under some
additional conditions. To prove this statement consider
a circular hole in an in®nite medium of constant con-

ductivity k. The pattern di�ers from the classical

cylindrical inhomogeneity of conductivity kc [7 pp.
426±428] in the boundary conditions along the circum-

ference. Namely, instead of matching temperature and
the ¯ux normal components (so called fourth-type
boundary condition) along the interface, we impose

the third type boundary condition (1).
In the cylindrical coordinate system originating from

the centre of the inclusion (O in Fig. 1) a suitable form

for the steady temperature distribution outside the
cylinder is [8, Ch. VI]:

T�r, y� � T0 �
X1
n�1

Anr
ÿn cos ny�U0r cos y �2�

where r and y are the radial and angular coordinates.

The coe�cients of expansion An are determined
from Eq. (1) routinely and after some algebra we get:

A1 � U0a
2 kÿ aa
aa� k

, A2 � A3 � � � � � 0 �3�

Notice that we can relate this solution with one for the
conjugation problem mentioned [7]. In particular, from

Eq. (3) it follows that a � kc=�ka�, where kc is conduc-
tivity value of the cylinder in the problem with fourth-
type boundary conditions. Similar comparisons are
common in ground-water hydrology where the third-

type boundary condition coe�cients (the Mjatiev±
Girinskii model) in Eq. (1) are expressed through the
values of thickness and conductivity of the thin tran-

sition zone (so called aquitard). In this zone ¯ow is
predominately orthogonal to the interface [3].
Let us choose now a � k=a in Eq. (3). Then all coef-

®cients in Eq. (2) are zero and, hence, the temperature
gradient equals U0 within the wall. Due to uniformity
of U we can now attach the circles of radius a to each
other periodically. Then, due to symmetry we remove

either right- or left-hand side of the resulting picture.
Consequently, we come to the developed surface in
Fig. 1.

Even though the case a � k=a is very speci®c, it

Fig. 1. System of semi-circular troughs of radius a.

Fig. 2. Sierpinsky's carpet (a), and Sierpinsky's gasket (b); subfractals of third order.
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shows that strictly uniform gradient distributions can
appear in walls with developed surfaces, the fact rarely

emphasized in textbooks.

3. Heat conduction in two fractal structures

Consider two-phase media (parquets) composed of
`dark' and `light' components with arbitrary conduc-
tivities k1 and k2, respectively. The structures are

placed in an outer temperature ®eld. Regular (non-
fractal) parquets were studied by Obnosov [5,9±11]
and several non-trivial features (not distinguishable by

standard numerical or homogenization techniques)
were described in an explicit, analytical form. Here, we
study fractal parquets, where the known Sierpinsky
patterns repeat themselves periodically in two direc-

tions. Such structures are now studied in many
branches of continuum mechanics [12], in particular, in
heat conduction [13]. However, to our knowledge,

there are no explicit solutions based on 2D tempera-
ture distributions taking into account the temperature

®eld refraction along the two component interfaces for

arbitrary k1 and k2.

Fig. 2 shows subfractals generated from two double-

periodic structures: (a) an array of rectangular in-

clusions (ARI) shown in Fig. 3a; (b) a regular triangu-

lar checkerboard structure (TCS) shown in Fig. 3b.

The procedure of fractal generation is straightforward.

For example, in Fig. 3a we split o� an elementary rec-

tangular cell 2l� 2h (Fig. 4a), the `dark' rectangle in-

clusion being of length l and height h. For this cell an

exact temperature ®eld was analysed [5,9]. Next step
generates 12 smaller rectangles (l=4� h=4) within the

elementary cell, then 144 rectangles (l=16� h=16) are

generated, etc. The procedure is carried on within all

elementary cells in Fig. 3a and a double-periodic com-

position of these structures constitutes the ®nal fractal

parquet. The second and third order subfractals are

shown in Figs. 5a and 2a correspondingly. They rep-

resent the plane covered by a patching of Sierpinsky's

carpets.

Figs. 3b, 3b and 5b demonstrate the stages of con-

struction of fractal structures (parquets composed by

Fig. 3. An array of rectangular inclusions (ARI) (a), and a regular triangular checkerboard structure (TCS) (b).

Fig. 4. An elementary cell of ARI (a), and TCS (b).
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Sierpinsky's gaskets) on the base of the elementary cell
shown in Fig. 4b. This parquet was studied in Ref. [12]

by a type of homogenization method.
Return to the subfractals of ®rst order (Fig. 3).

Consider the heat ¯ux U�x, y� � �Ux�x, y�,Uy�x, y��,
where Ux�x, y� and Uy�x, y� are the horizontal and
vertical ¯ux components, respectively. In each of the
two phases D1, D2 the Fourier law holds:

Uj�x, y� � ÿkjrTj�x, y�, �x, y� 2 Dj, j � 1, 2

Temperature T�x, y� is harmonic within the two com-

ponents of the parquet. The ¯ux U�x, y� is interpreted
as a complex function U�z� � Ux�x, y� � iUy�x, y� of
the complex coordinate z � x� iy. U�z� is an antiholo-

morphic function [14, pp. 73±75] within the `dark' and
`light' phases i.e. U�z� � dT�z�=dz, where overbarring
means complex conjugation. Two standard conditions
hold along the interfaces L:�
U1�t�

�
n
� �U2�t�

�
n
,�

1

k1
U2�t�

�
t
�
�
1

k2
U2�t�

�
t
, t 2 L

i.e continuity of the normal component and jump of

the tangential component of U�z�.
Exact solutions for both periodic structures in Fig. 3

were developed in Refs. [10,11]. In particular, in Ref.

[5] the e�ective thermal conductivity

kef � hk�z�U�z�ihU�z�i �4�

and dissipation

D � hjU�z�j2=k�z�i �5�

were found. The angular brackets here designate aver-
aging over the elementary cell S i.e.

hU�z�i � 1

jSj
�
S

U�z� ds

jSj is the area of the cell S.
For ARI the functionals (4), (5) are

kef � kef �k1, k2 � � k1

�������������
2� D
2ÿ D

r
Qx � iQy

QxW1=W� iQyW=W1
�6�

D � D�k1, k2 � � 1

k1

�������������
2ÿ D
2� D

r �
Q2

x

W1
W
�Q2

y

W
W1

�
�7�

where

W � W�m� � F�1=2, 1=2; 1; m�
F

�
1� l
2

,
1ÿ l
2

; 1; m

� ,
W1 � W�1ÿm�

�8�

l � 2

p
arcsin

jDj
2
, D � k2 ÿ k1

k2 � k1
�9�

In its turn, F�a; b; g; z� � 2F1�a, b; g; z� is hypergeo-
metric function. The parameter m � m�h=l � is calcu-
lated from the `dark' rectangle's side ratio (l/h ) [15,

Table 17.3]. Q0 � Qx � iQy and Qx,Qy are the ¯uxes
through adjoint sides of the corresponding elementary
cell:

Qx � 1

2h

�h
ÿh

ReU�l� iy� dy,

Qy � 1

2l

�l
ÿl

ImU�x� ih� dx

For TCS

kef �
���������
k1k2

p
, D � 1���������

k1k2
p jQ0j2 �10�

where Q0 � �2Q2 �Q1�=
���
3
p � iQ1 and

Q1 � 1

l

�l
0

ImU�x� dx, Q2 � 1

l

�l
0

Re
�
eip=6U�eip=3x�

�
dx

Now we apply the rigorous results valid for the sub-
fractals of ®rst order (Fig. 3) to the case of arbitrary
order fractals. For this purpose, treating both struc-

tures in Fig. 2, we calculate approximate values of kef

and D for subfractals of nth order. For step-by-step
approximations we follow the Maxwell procedure, i.e

at each step we substitute the `environment' of the cor-
responding `dark' element by an e�ectively homo-
geneous medium. Recall that Maxwell substituted the

environment (generally inhomogeneous) of a spherical
inclusion by an e�ectively homogeneous medium and
used an exact solution with conjugation conditions

along the sphere surface. His approximation is valid
for su�ciently `diluted' suspensions, i.e. the distance
between two neighbouring inclusions should be suf-
®ciently large. Note, that the Maxwell approximation

resulted in relatively simple formulae because the ¯ux
within each sphere (and generally for any ellipsoidal
inclusion) is constant.

Thus, in our case for any subfractal the outer me-
dium within any elementary cell is assumed to be e�ec-
tively homogeneous (clearly, in reality it is not homo-

geneous and the distance between two neighbouring
`dark' inclusions is not too high). Then, the e�ective
parameters are calculated on the base of the rigorous
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solutions for the subfractal of ®rst order (presented

above). Emphasize, that the temperature distribution

both in the `environment' and in the inclusion are

essentially 2D (the ¯ux is not constant). Then upscal-

ing is performed and for the `dark' rectangle of larger

dimension the procedure is repeated until the whole

medium scale (nth step) is reached.

For simplicity, assume that the external ®eld is di-

rected along one of the symmetry axes

(Q0 � Qx, Qy � 0 or Qx � 0, Q0 � iQy) in the case of

ARI. For TCS, Q0 is oriented arbitrary. Then, `begin-

ning from the end' we can evaluate dissipation D1 �
D�k1, k2� of the structures shown in Fig. 3 using Eqs.

(6)±(10).

Designate k1 � k11 and k21 � kef �k11, k2�. Then we cal-

culate the dissipation of the subfractals (Fig. 5) of the

second order as D2 � D�k21, k2�. Continuing this evalu-

ation, at the nth step, we get

Dn � D
ÿ
kn1, k2

�
, where kn1 � kef

ÿ
knÿ11 , k2

�
Fig. 6 shows the results of calculation of the e�ective

conductivity of the structure in Fig. 2a as a function of
k2 for subfractals up to the ninth order at k1 � k11 � 1
and l � h. Clearly, the graphs show that kn1 tends to k2
when n41.

For the case of an array of square inclusions (ARI
with l � h) and an arbitrary TCS, dissipation is 1=kn1
multiplied by jQ0j2. Besides, D does not depend on the

orientation of the external ®eld (i.e. the argument of
the vector Q0).

4. Conclusion

We have used the standard interface condition (1)
for a developed surface. As was discussed earlier [3]

Fig. 5. Sierpinsky's carpet (a), and Sierpinsky's gasket (b); subfractals of second order.

Fig. 6. E�ective thermal conductivities of Sierpinsky's square carpet; subfractals from ®rst to ninth order.
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solutions of boundary value problems with this con-
dition can be compared with solutions involving physi-

cally better substantiated refraction conditions. For the
system of grooves studied the results of [16] can be
readily applied.

The `homogenization' used for determination of
e�ective parameters of fractals is essentially di�erent
from usually performed. Forsooth, we do not obliter-

ate refraction of the temperature ®eld along interfaces
and involve the exact solution of the conjugation
problem at each step of fractalization. Moreover, from

Eq. (6) the e�ective conductivity of the ®rst order sub-
fractal of ARI is generally a tensor except for a very
speci®c case discussed above (l � h,Q0 � Qx or
Q0 � iQy). Apparently, D is scalar for any parquet.

Emphasize, that in many standard simpli®ed homogen-
ization techniques the e�ective conductivity is incor-
rectly postulated to be a scalar. Moreover, in the

literature we could not ®nd veracious proofs that
upscaling always results in an `ellipse' of e�ective con-
ductivity. Such an ellipse became a synecdoche of the

macroconductivity of heterogeneous media though
upon scrupulous averaging [5] even seemingly `obvious'
statements of Dykhne [17,18] occurred to be in-

adequate for some parquets.
For general ARI, evaluation of the e�ective conduc-

tivity of subfractals of orders higher than one calls for
consequential upscaling of tensorial values. Further,

we plan to determine these tensors. We intend to
utilize the solution for ARI and other rigorous sol-
utions in thermal contact problems. In particular, we

are going to model the contact zone either as an array
of `bubbles' or as a rippled, zigzag interface (see [19]).
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